Search results
Results from the WOW.Com Content Network
In mathematics, particularly in number theory, Hillel Furstenberg's proof of the infinitude of primes is a topological proof that the integers contain infinitely many prime numbers. When examined closely, the proof is less a statement about topology than a statement about certain properties of arithmetic sequences.
Since no prime number divides 1, p cannot be in the list. This means that at least one more prime number exists that is not in the list. This proves that for every finite list of prime numbers there is a prime number not in the list. [4] In the original work, Euclid denoted the arbitrary finite set of prime numbers as A, B, Γ. [5]
Both the Furstenberg and Golomb topologies furnish a proof that there are infinitely many prime numbers. [1] [2] A sketch of the proof runs as follows: Fix a prime p and note that the (positive, in the Golomb space case) integers are a union of finitely many residue classes modulo p. Each residue class is an arithmetic progression, and thus clopen.
Not all Euclid numbers are prime. E 6 = 13# + 1 = 30031 = 59 × 509 is the first composite Euclid number.. Every Euclid number is congruent to 3 modulo 4 since the primorial of which it is composed is twice the product of only odd primes and thus congruent to 2 modulo 4.
Formula for primes; Fortunate number; Freshman's dream; Furstenberg's proof of the infinitude of primes; G. Gaussian moat; Generation of primes; Goldbach's comet; I.
If 2 k + 1 is prime and k > 0, then k itself must be a power of 2, [1] so 2 k + 1 is a Fermat number; such primes are called Fermat primes. As of 2023 [update] , the only known Fermat primes are F 0 = 3 , F 1 = 5 , F 2 = 17 , F 3 = 257 , and F 4 = 65537 (sequence A019434 in the OEIS ).
A Mersenne prime is a prime number of the form M p = 2 p − 1, one less than a power of two. For a number of this form to be prime, p itself must also be prime, but not all primes give rise to Mersenne primes in this way. For instance, 2 3 − 1 = 7 is a Mersenne prime, but 2 11 − 1 = 2047 = 23 × 89 is not.
Prime number. Infinitude of the prime numbers; Primitive recursive function; Principle of bivalence. no propositions are neither true nor false in intuitionistic logic; Recursion; Relational algebra (to do) Solvable group; Square root of 2; Tetris; Algebra of sets. idempotent laws for set union and intersection