Search results
Results from the WOW.Com Content Network
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number.
The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...
Even without knowledge that we are working in the multiplicative group of integers modulo n, we can show that a actually has an order by noting that the powers of a can only take a finite number of different values modulo n, so according to the pigeonhole principle there must be two powers, say s and t and without loss of generality s > t, such that a s ≡ a t (mod n).
In newer language versions the distinction is completely gone and all integers behave like arbitrary-length integers. Python supports normal floating point numbers, which are created when a dot is used in a literal (e.g. 1.1), when an integer and a floating point number are used in an expression, or as a result of some mathematical operations ...
For positive integers a, gcd(a, a) = a. Every common divisor of a and b is a divisor of gcd(a, b). gcd(a, b), where a and b are not both zero, may be defined alternatively and equivalently as the smallest positive integer d which can be written in the form d = a⋅p + b⋅q, where p and q are integers.
One can prove [citation needed] that = is the largest possible number for which the stopping criterion | + | < ensures ⌊ + ⌋ = ⌊ ⌋ in the algorithm above.. In implementations which use number formats that cannot represent all rational numbers exactly (for example, floating point), a stopping constant less than 1 should be used to protect against round-off errors.
The sides of the squares used to construct a silver spiral are the Pell numbers. In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2.