Search results
Results from the WOW.Com Content Network
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln( X ) has a normal distribution.
In probability theory, a logit-normal distribution is a probability distribution of a random variable whose logit has a normal distribution.If Y is a random variable with a normal distribution, and t is the standard logistic function, then X = t(Y) has a logit-normal distribution; likewise, if X is logit-normally distributed, then Y = logit(X)= log (X/(1-X)) is normally distributed.
The one shown here gives reasonably interpretable parameters and a simple form for the cumulative distribution function. [4] [5] The parameter > is a scale parameter and is also the median of the distribution. The parameter > is a shape parameter.
The modified lognormal power-law (MLP) function is a three parameter function that can be used to model data that have characteristics of a log-normal distribution and a power law behavior. It has been used to model the functional form of the initial mass function (IMF). Unlike the other functional forms of the IMF, the MLP is a single function ...
To derive estimators for the parameters of probability distributions, applying the method of moments to the L-moments rather than conventional moments. In addition to doing these with standard moments, the latter (estimation) is more commonly done using maximum likelihood methods; however using L-moments provides a number of advantages.
The log-t distribution has the probability density function: (, ^, ^) = (+) ^ (+ ( ^ ^)) +,where ^ is the location parameter of the underlying (non-standardized) Student's t-distribution, ^ is the scale parameter of the underlying (non-standardized) Student's t-distribution, and is the number of degrees of freedom of the underlying Student's t-distribution. [1]
When the smaller values tend to be farther away from the mean than the larger values, one has a skew distribution to the left (i.e. there is negative skewness), one may for example select the square-normal distribution (i.e. the normal distribution applied to the square of the data values), [1] the inverted (mirrored) Gumbel distribution, [1 ...
In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis , logistic regression [ 1 ] (or logit regression ) estimates the parameters of a logistic model (the coefficients in the linear or non linear ...