enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]

  3. Compound Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Compound_Poisson_distribution

    The shift geometric distribution is discrete compound Poisson distribution since it is a trivial case of negative binomial distribution. This distribution can model batch arrivals (such as in a bulk queue [5] [9]). The discrete compound Poisson distribution is also widely used in actuarial science for modelling the distribution of the total ...

  4. Zero-truncated Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Zero-truncated_Poisson...

    This distribution is also known as the conditional Poisson distribution [1] or the positive Poisson distribution. [2] It is the conditional probability distribution of a Poisson-distributed random variable, given that the value of the random variable is not zero. Thus it is impossible for a ZTP random variable to be zero.

  5. Zero-inflated model - Wikipedia

    en.wikipedia.org/wiki/Zero-inflated_model

    As the examples above show, zero-inflated data can arise as a mixture of two distributions. The first distribution generates zeros. The second distribution, which may be a Poisson distribution, a negative binomial distribution or other count distribution, generates counts, some of which may be zeros.

  6. Poisson regression - Wikipedia

    en.wikipedia.org/wiki/Poisson_regression

    Another common problem with Poisson regression is excess zeros: if there are two processes at work, one determining whether there are zero events or any events, and a Poisson process determining how many events there are, there will be more zeros than a Poisson regression would predict. An example would be the distribution of cigarettes smoked ...

  7. List of examples of Stigler's law - Wikipedia

    en.wikipedia.org/wiki/List_of_examples_of_Stigler...

    Poisson distribution: described by Siméon Denis Poisson in 1837, though the result had already been given in 1711-21 by Abraham de Moivre. Poisson spot: predicted by Fresnel's theory of diffraction, named after Poisson, who ridiculed the theory, especially its prediction of the existence of this spot. [33]

  8. Conway–Maxwell–Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Conway–Maxwell–Poisson...

    In probability theory and statistics, the Conway–Maxwell–Poisson (CMP or COM–Poisson) distribution is a discrete probability distribution named after Richard W. Conway, William L. Maxwell, and Siméon Denis Poisson that generalizes the Poisson distribution by adding a parameter to model overdispersion and underdispersion.

  9. M/M/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/M/1_queue

    Arrivals occur at rate λ according to a Poisson process and move the process from state i to i + 1. Service times have an exponential distribution with rate parameter μ in the M/M/1 queue, where 1/μ is the mean service time. All arrival times and services times are (usually) assumed to be independent of one another. [2]