Search results
Results from the WOW.Com Content Network
Arrow-pushing mechanism for the Darzens reaction. If the starting halide is an α-halo amide, the product is an α,β-epoxy amide. [8] If an α-halo ketone is used, the product is an α,β-epoxy ketone. [2] Any sufficiently strong base can be used for the initial deprotonation.
A hydrohalogenation reaction is the electrophilic addition of hydrogen halides like hydrogen chloride or hydrogen bromide to alkenes to yield the corresponding haloalkanes. [ 1 ] [ 2 ] [ 3 ] If the two carbon atoms at the double bond are linked to a different number of hydrogen atoms, the halogen is found preferentially at the carbon with fewer ...
The term enol is an abbreviation of alkenol, a portmanteau deriving from "-ene"/"alkene" and the "-ol". Many kinds of enols are known. [1] Keto–enol tautomerism refers to a chemical equilibrium between a "keto" form (a carbonyl, named for the common ketone case) and an enol.
In chemistry, the haloform reaction (also referred to as the Lieben haloform reaction) is a chemical reaction in which a haloform (CHX 3, where X is a halogen) is produced by the exhaustive halogenation of an acetyl group (R−C(=O)CH 3, where R can be either a hydrogen atom, an alkyl or an aryl group), in the presence of a base.
In organic chemistry, the ene reaction (also known as the Alder-ene reaction by its discoverer Kurt Alder in 1943) is a chemical reaction between an alkene with an allylic hydrogen (the ene) and a compound containing a multiple bond (the enophile), in order to form a new σ-bond with migration of the ene double bond and 1,5 hydrogen shift.
Dehydrohalogenation to give an alkene. In chemistry, dehydrohalogenation is an elimination reaction which removes a hydrogen halide from a substrate. The reaction is usually associated with the synthesis of alkenes, but it has wider applications.
The concerted reaction occurs due to the orbital overlap between the alkene and the allylic enophile. [2] The electrons in the highest occupied molecular orbital of the ene are transferred to the lowest occupied molecular orbital of the enophile. [7] Figure 1. The mechanism of the group transfer reaction is allowed by the orbital overlap of the ...
In the cases of 1,3-, 1,4-, 1,5-, and 1,6- dihalides, Wurtz-reaction conditions lead to formation of cyclic products, although yields are variable. Under Wurtz conditions, vicinal dihalides yield alkenes, whereas geminal dihalides convert to alkynes. Bicyclobutane was prepared this way from 1-bromo-3-chlorocyclobutane in 95% yield. The reaction ...