Search results
Results from the WOW.Com Content Network
MRI scans showing hyperintensities. A hyperintensity or T2 hyperintensity is an area of high intensity on types of magnetic resonance imaging (MRI) scans of the brain of a human or of another mammal that reflect lesions produced largely by demyelination and axonal loss.
The term "leukoaraiosis" was coined in 1986 [6] [7] by Hachinski, Potter, and Merskey as a descriptive term for rarefaction ("araiosis") of the white matter, showing up as decreased density on CT and increased signal intensity on T2/FLAIR sequences (white matter hyperintensities) performed as part of MRI brain scans. These white matter changes ...
Radiologically isolated syndrome (RIS) is a clinical situation in which a person has white matter lesions suggestive of multiple sclerosis (MS), as shown on an MRI scan that was done for reasons unrelated to MS symptoms.
MRI does not involve X-rays or the use of ionizing radiation, which distinguishes it from computed tomography (CT) and positron emission tomography (PET) scans. MRI is a medical application of nuclear magnetic resonance (NMR) which can also be used for imaging in other NMR applications, such as NMR spectroscopy. [1]
Using high field MRI system, with several variants several areas show lesions, and can be spacially classified in infratentorial, callosal, juxtacortical, periventricular, and other white matter areas. [21] Other authors simplify this in three regions: intracortical, mixed gray-white matter, and juxtacortical. [22]
The first MR images of a human brain were obtained in 1978 by two groups of researchers at EMI Laboratories led by Ian Robert Young and Hugh Clow. [1] In 1986, Charles L. Dumoulin and Howard R. Hart at General Electric developed MR angiography, [2] and Denis Le Bihan obtained the first images and later patented diffusion MRI. [3]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
T 2 *-weighted sequences are used to detect deoxygenated hemoglobin, methemoglobin, or hemosiderin in lesions and tissues. [2] Diseases with such patterns include intracranial hemorrhage, arteriovenous malformation, cavernoma, hemorrhage in a tumor, punctate hemorrhages in diffuse axonal injury, superficial siderosis, thrombosed aneurysm, phleboliths in vascular lesions, and some forms of ...