enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S {\displaystyle S} of integers and a target-sum T {\displaystyle T} , and the question is to decide whether any subset of the integers sum to precisely T {\displaystyle T} . [ 1 ]

  3. Subset - Wikipedia

    en.wikipedia.org/wiki/Subset

    A is a subset of B (denoted ) and, conversely, B is a superset of A (denoted ). In mathematics, a set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B.

  4. Indicator function - Wikipedia

    en.wikipedia.org/wiki/Indicator_function

    The indicator function of A is the Iverson bracket of the property of belonging to A; that is, = []. For example, the Dirichlet function is the indicator function of the rational numbers as a subset of the real numbers.

  5. Multiple subset sum - Wikipedia

    en.wikipedia.org/wiki/Multiple_subset_sum

    The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem. The input to the problem is a multiset of n integers and a positive integer m representing the number of subsets. The goal is to construct, from the input integers, some m subsets. The problem ...

  6. Python syntax and semantics - Wikipedia

    en.wikipedia.org/wiki/Python_syntax_and_semantics

    Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})

  7. Multiset - Wikipedia

    en.wikipedia.org/wiki/Multiset

    This extended multiplicity function is commonly called simply the multiplicity function, and suffices for defining multisets when the universe containing the elements has been fixed. This multiplicity function is a generalization of the indicator function of a subset , and shares some properties with it.

  8. Power set - Wikipedia

    en.wikipedia.org/wiki/Power_set

    An indicator function or a characteristic function of a subset A of a set S with the cardinality | S | = n is a function from S to the two-element set {0, 1}, denoted as I A : S → {0, 1}, and it indicates whether an element of S belongs to A or not; If x in S belongs to A, then I A (x) = 1, and 0 otherwise.

  9. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    In this poset, 60 is an upper bound (though not a least upper bound) of the subset {,,,}, which does not have any lower bound (since 1 is not in the poset); on the other hand 2 is a lower bound of the subset of powers of 2, which does not have any upper bound. If the number 0 is included, this will be the greatest element, since this is a ...