Search results
Results from the WOW.Com Content Network
A block diagram is a diagram of a system in which the principal parts or functions are represented by blocks connected by lines that show the relationships of the blocks. [1] They are heavily used in engineering in hardware design , electronic design , software design , and process flow diagrams .
Block diagram of a control system with disturbance. The sensitivity function also describes the transfer function from external disturbance to process output. In fact, assuming an additive disturbance n after the output of the plant, the transfer functions of the closed loop system are given by
Functional block diagram of the attitude control and maneuvering electronics system of the Gemini spacecraft. June 1962. A functional block diagram, in systems engineering and software engineering, is a block diagram that describes the functions and interrelationships of a system. The functional block diagram can picture: [1]
A control loop is the fundamental building block of control systems in general and industrial control systems in particular. It consists of the process sensor, the controller function, and the final control element (FCE) which controls the process necessary to automatically adjust the value of a measured process variable (PV) to equal the value of a desired set-point (SP).
The control action is the switching on/off of the boiler, but the controlled variable should be the building temperature, but is not because this is open-loop control of the boiler, which does not give closed-loop control of the temperature. In closed loop control, the control action from the controller is dependent on the process output. In ...
Example of a system context diagram. [1] A system context diagram in engineering is a diagram that defines the boundary between the system, or part of a system, and its environment, showing the entities that interact with it. [2] This diagram is a high level view of a system. It is similar to a block diagram.
Temperature measuring and controlling module for microcontroller experiment. Temperature control is a process in which change of temperature of a space (and objects collectively there within), or of a substance, is measured or otherwise detected, and the passage of heat energy into or out of the space or substance is adjusted to achieve a desired temperature.
Thermal simulations give engineers a visual representation of the temperature and airflow inside the equipment. Thermal simulations enable engineers to design the cooling system; to optimise a design to reduce power consumption, weight and cost; and to verify the thermal design to ensure there are no issues when the equipment is built.