Search results
Results from the WOW.Com Content Network
A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).
This approach justifies, for example, the notion of uniform convergence. [2] It is relatively rare for such sufficient conditions to be also necessary, so that a sharper piece of analysis may extend the domain of validity of formal results.
The distinction between pointwise and uniform convergence is important when exchanging the order of two limiting operations (e.g., taking a limit, a derivative, or integral) is desired: in order for the exchange to be well-behaved, many theorems of real analysis call for uniform convergence.
Abel's uniform convergence test is a criterion for the uniform convergence of a series of functions or an improper integration of functions dependent on parameters. It is related to Abel's test for the convergence of an ordinary series of real numbers, and the proof relies on the same technique of summation by parts. The test is as follows.
In general, the most common criteria for pointwise convergence of a periodic function f are as follows: If f satisfies a Holder condition, then its Fourier series converges uniformly. [5] If f is of bounded variation, then its Fourier series converges everywhere. If f is additionally continuous, the convergence is uniform. [6]
Differentiation notation ... was the first rigorous definition of the integral of a function ... uniform convergence of a function is not strong enough to allow ...
In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...
Note that () is continuous on the real closed interval [,] for <, by virtue of the uniform convergence of the series on compact subsets of the disk of convergence. Abel's theorem allows us to say more, namely that the restriction of G ( z ) {\displaystyle G(z)} to [ 0 , 1 ] {\displaystyle [0,1]} is continuous.