enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = ⁡ (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).

  3. Interchange of limiting operations - Wikipedia

    en.wikipedia.org/wiki/Interchange_of_limiting...

    This approach justifies, for example, the notion of uniform convergence. [2] It is relatively rare for such sufficient conditions to be also necessary, so that a sharper piece of analysis may extend the domain of validity of formal results.

  4. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    The distinction between pointwise and uniform convergence is important when exchanging the order of two limiting operations (e.g., taking a limit, a derivative, or integral) is desired: in order for the exchange to be well-behaved, many theorems of real analysis call for uniform convergence.

  5. Abel's test - Wikipedia

    en.wikipedia.org/wiki/Abel's_test

    Abel's uniform convergence test is a criterion for the uniform convergence of a series of functions or an improper integration of functions dependent on parameters. It is related to Abel's test for the convergence of an ordinary series of real numbers, and the proof relies on the same technique of summation by parts. The test is as follows.

  6. List of real analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_real_analysis_topics

    Convolution. Cauchy product –is the discrete convolution of two sequences; Farey sequence – the sequence of completely reduced fractions between 0 and 1; Oscillation – is the behaviour of a sequence of real numbers or a real-valued function, which does not converge, but also does not diverge to +∞ or −∞; and is also a quantitative measure for that.

  7. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    In general, the most common criteria for pointwise convergence of a periodic function f are as follows: If f satisfies a Holder condition, then its Fourier series converges uniformly. [5] If f is of bounded variation, then its Fourier series converges everywhere. If f is additionally continuous, the convergence is uniform. [6]

  8. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    An analogous statement for convergence of improper integrals is proven using integration by parts. If the integral of a function f is uniformly bounded over all intervals, and g is a non-negative monotonically decreasing function, then the integral of fg is a convergent improper integral.

  9. Abel's theorem - Wikipedia

    en.wikipedia.org/wiki/Abel's_theorem

    Note that () is continuous on the real closed interval [,] for <, by virtue of the uniform convergence of the series on compact subsets of the disk of convergence. Abel's theorem allows us to say more, namely that the restriction of G ( z ) {\displaystyle G(z)} to [ 0 , 1 ] {\displaystyle [0,1]} is continuous.