enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rate of convergence - Wikipedia

    en.wikipedia.org/wiki/Rate_of_convergence

    [1] [7]: 620 A sequence () that converges to is said to converge at least R-linearly if there exists an error-bounding sequence () such that | | and () converges Q-linearly to zero; analogous definitions hold for R-superlinear convergence, R-sublinear convergence, R-quadratic convergence, and so on.

  3. Fixed-point iteration - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_iteration

    In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .

  4. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    The following iterates are 1.0103, 1.00093, 1.0000082, and 1.00000000065, illustrating quadratic convergence. This highlights that quadratic convergence of a Newton iteration does not mean that only few iterates are required; this only applies once the sequence of iterates is sufficiently close to the root. [16]

  5. Iterative method - Wikipedia

    en.wikipedia.org/wiki/Iterative_method

    If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.

  6. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2).

  7. Local convergence - Wikipedia

    en.wikipedia.org/wiki/Local_convergence

    Iterative methods for nonlinear equations and their systems, such as Newton's method are usually only locally convergent. An iterative method that converges for an arbitrary initial approximation is called globally convergent. Iterative methods for systems of linear equations are usually globally convergent.

  8. Halley's method - Wikipedia

    en.wikipedia.org/wiki/Halley's_method

    Halley's method is a numerical algorithm for solving the nonlinear equation f(x) = 0.In this case, the function f has to be a function of one real variable. The method consists of a sequence of iterations:

  9. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel .