Search results
Results from the WOW.Com Content Network
More generally, the restriction (or domain restriction or left-restriction) of a binary relation between and may be defined as a relation having domain , codomain and graph ( ) = {(,) ():}. Similarly, one can define a right-restriction or range restriction R B . {\displaystyle R\triangleright B.}
For example, it is sometimes convenient in set theory to permit the domain of a function to be a proper class X, in which case there is formally no such thing as a triple (X, Y, G). With such a definition, functions do not have a domain, although some authors still use it informally after introducing a function in the form f: X → Y. [2]
The domain of definition of such a function is the set of inputs for which the algorithm does not run forever. A fundamental theorem of computability theory is that there cannot exist an algorithm that takes an arbitrary general recursive function as input and tests whether 0 belongs to its domain of definition (see Halting problem).
In mathematics, a partial function f from a set X to a set Y is a function from a subset S of X (possibly the whole X itself) to Y. The subset S, that is, the domain of f viewed as a function, is called the domain of definition or natural domain of f. If S equals X, that is, if f is defined on every element in X, then f is said to be a total ...
In mathematics, a surjective function (also known as surjection, or onto function / ˈ ɒ n. t uː /) is a function f such that, for every element y of the function's codomain, there exists at least one element x in the function's domain such that f(x) = y. In other words, for a function f : X → Y, the codomain Y is the image of the function ...
For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function. In the study of several complex variables, the definition of a domain is extended to include any connected open subset of C n.
Explicitly including the definition of the limit of a function, we obtain a self-contained definition: Given a function : as above and an element of the domain , is said to be continuous at the point when the following holds: For any positive real number >, however small, there exists some positive real number > such that for all in the domain ...
An example: the ring k[x, y]/(xy), where k is a field, is not a domain, since the images of x and y in this ring are zero divisors. Geometrically, this corresponds to the fact that the spectrum of this ring, which is the union of the lines x = 0 and y = 0 , is not irreducible.