Search results
Results from the WOW.Com Content Network
Domain coloring plot of the function f(x) = (x 2 − 1)(x − 2 − i) 2 / x 2 + 2 + 2i , using the structured color function described below. In complex analysis, domain coloring or a color wheel graph is a technique for visualizing complex functions by assigning a color to each point of the complex plane. By assigning points on the ...
The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4. The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1. The minimum value of x is ...
The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for >, and its analytic continuation elsewhere.
The digamma function (), visualized using domain coloring Plots of the digamma and the next three polygamma functions along the real line (they are real-valued on the real line) In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function: [1] [2] [3]
A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.
The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic except at zero and the negative integers, where it has simple poles. The gamma function has no zeros, so the reciprocal gamma function 1 / Γ(z) is an entire function.
Color representation of the Dirichlet eta function. It is generated as a Matplotlib plot using a version of the Domain coloring method. [1]In mathematics, in the area of analytic number theory, the Dirichlet eta function is defined by the following Dirichlet series, which converges for any complex number having real part > 0: = = = + +.
Because of the periodicity of the sine and cosine / is chosen to be the domain, so the function is bijective. In a similar way one can get a parameterization of C g 2 , g 3 C {\displaystyle C_{g_{2},g_{3}}^{\mathbb {C} }} by means of the doubly periodic ℘ {\displaystyle \wp } -function (see in the section "Relation to elliptic curves").