enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermal de Broglie wavelength - Wikipedia

    en.wikipedia.org/wiki/Thermal_de_Broglie_wavelength

    In physics, the thermal de Broglie wavelength (, sometimes also denoted by ) is a measure of the uncertainty in location of a particle of thermodynamic average momentum in an ideal gas. [1] It is roughly the average de Broglie wavelength of particles in an ideal gas at the specified temperature.

  3. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (/ d ə ˈ b r ɔɪ /) in 1924, and so matter waves are also known as de Broglie waves. The de Broglie wavelength is the wavelength , λ , associated with a particle with momentum p through the Planck constant , h : λ = h p . {\displaystyle \lambda ...

  4. Matter wave clock - Wikipedia

    en.wikipedia.org/wiki/Matter_wave_clock

    De Broglie also proposed that the wavelength λ for a moving particle was equal to h/p where p is the particle's momentum. The period (one cycle of the wave) is equal to 1/ f . This precise Compton periodicity of a matter wave is said to be the necessary condition for a clock, with the implication that any such matter particle may be regarded ...

  5. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    The wavelength associated with a non-relativistic particle is the de Broglie wavelength =, where is the Planck constant and is the momentum of the particle (mass × velocity for slow-moving particles). For example, a sodium atom traveling at about 300 m/s would have a de Broglie wavelength of about 50 picometres.

  6. Hydrogen spectral series - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_spectral_series

    The wavelength will always be positive because n′ is defined as the lower level and so is less than n.This equation is valid for all hydrogen-like species, i.e. atoms having only a single electron, and the particular case of hydrogen spectral lines is given by Z = 1.

  7. Relativistic wave equations - Wikipedia

    en.wikipedia.org/wiki/Relativistic_wave_equations

    The failure of classical mechanics applied to molecular, atomic, and nuclear systems and smaller induced the need for a new mechanics: quantum mechanics.The mathematical formulation was led by De Broglie, Bohr, Schrödinger, Pauli, and Heisenberg, and others, around the mid-1920s, and at that time was analogous to that of classical mechanics.

  8. Plasma parameters - Wikipedia

    en.wikipedia.org/wiki/Plasma_parameters

    All quantities are in Gaussian units except energy and temperature which are in electronvolts.For the sake of simplicity, a single ionic species is assumed. The ion mass is expressed in units of the proton mass, = / and the ion charge in units of the elementary charge, = / (in the case of a fully ionized atom, equals to the respective atomic number).

  9. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The de Broglie relation, [10] [11] [12] also known as de Broglie's momentum–wavelength relation, [4] generalizes the Planck relation to matter waves. Louis de Broglie argued that if particles had a wave nature, the relation E = hν would also apply to them, and postulated that particles would have a wavelength equal to λ = ⁠ h / p ⁠.

  1. Related searches calculate the de broglie wavelength of a hydrogen atom traveling at 495 m s

    de broglie wavelengthde broglie cold sodium
    thermal de broglie physicsthermal de broglie
    thermal de broglie distance