Search results
Results from the WOW.Com Content Network
The space of all functions from X to V is commonly denoted V X. If X is finite and V is finite-dimensional then V X has dimension |X|(dim V), otherwise the space is infinite-dimensional (uncountably so if X is infinite). Many of the vector spaces that arise in mathematics are subspaces of some function space. We give some further examples.
Let F be a field and let X be any set. The functions X → F can be given the structure of a vector space over F where the operations are defined pointwise, that is, for any f, g : X → F, any x in X, and any c in F, define (+) = + () = When the domain X has additional structure, one might consider instead the subset (or subspace) of all such functions which respect that structure.
For any vector space V, the projection X × V → X makes the product X × V into a "trivial" vector bundle. Vector bundles over X are required to be locally a product of X and some (fixed) vector space V: for every x in X, there is a neighborhood U of x such that the restriction of π to π −1 (U) is isomorphic [nb 11] to the trivial bundle ...
The space R n consists of all n-tuples of real numbers (x 1, ..., x n). The subspace, identified with R m, consists of all n-tuples such that the last n − m entries are zero: (x 1, ..., x m, 0, 0, ..., 0). Two vectors of R n are in the same equivalence class modulo the subspace if and only if they are identical in the last n − m coordinates.
The left null space of A is the set of all vectors x such that x T A = 0 T. It is the same as the null space of the transpose of A. The product of the matrix A T and the vector x can be written in terms of the dot product of vectors:
In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior . Intuitively speaking, a neighbourhood of a point is a set of points containing that point where one can move some amount in any direction away from ...
These are Banach spaces together with a continuous multiplication operation. An important early example was the Banach algebra of essentially bounded measurable functions on a measure space X. This set of functions is a Banach space under pointwise addition and scalar multiplication.
That is, if 0 → V → W → X → 0 is a short exact sequence of vector spaces, then the space of all splittings of the exact sequence naturally carries the structure of an affine space over Hom(X, V). The space of connections (viewed from the vector bundle, where is a smooth manifold) is an affine space for the vector space of () valued 1-forms.