Search results
Results from the WOW.Com Content Network
Both calculate an approximation of the first natural frequency of vibration, which is assumed to be nearly equal to the critical speed of rotation. The Rayleigh–Ritz method is discussed here. For a shaft that is divided into n segments, the first natural frequency for a given beam, in rad/s , can be approximated as:
The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw. These are collectively known as aircraft attitude , often principally relative to the atmospheric frame in normal flight, but also relative to terrain during takeoff or landing ...
Flight dynamics is the science of air-vehicle orientation and control in three dimensions. The critical flight dynamics parameters are the angles of rotation with respect to the three aircraft's principal axes about its center of gravity, known as roll, pitch and yaw.
The yaw rate is directly related to the lateral acceleration of the vehicle turning at constant speed around a constant radius, by the relationship tangential speed*yaw velocity = lateral acceleration = tangential speed^2/radius of turn, in appropriate units. The sign convention can be established by rigorous attention to coordinate systems.
Dunkerley's method [1] [2] is used in mechanical engineering to determine the critical speed of a shaft-rotor system. Other methods include the Rayleigh–Ritz method . Whirling of a shaft
The critical speed of a rotating machine occurs when the rotational speed matches its natural frequency. The lowest speed at which the natural frequency is first encountered is called the first critical speed, but as the speed increases, additional critical speeds are seen which are the multiples of the natural frequency.
As speed reduces, angle of attack has to increase to keep lift constant until the critical angle is reached. The airspeed at which this angle is reached is the (1g, unaccelerated) stalling speed of the aircraft in that particular configuration.
It is involved in other properties such as characteristic speed (the speed for an understeer vehicle where the steer angle needed to negotiate a turn is twice the Ackermann angle), lateral acceleration gain (g's/deg), yaw velocity gain (1/s), and critical speed (the speed where an oversteer vehicle has infinite lateral acceleration gain).