Search results
Results from the WOW.Com Content Network
Hydrogel fiber is a hydrogel made into a fibrous state, where its width is significantly smaller than its length. The hydrogel's specific surface area at fibrous form is larger than that of the bulk hydrogel, and its mechanical properties also changed accordingly. As a result of these changes, hydrogel fiber has a faster matter exchange rate ...
Radical polymerization is a method of chain growth polymerization. Chain-growth polymerization is one of the most common methods for synthesizing hydrogels. Both free-radical polymerization, and more recently, controlled-radical polymerization have been utilized for the preparation of self healing hydrogels.
Peptide hydrogel formation shown by the inverted vial method. A hydrogel is a biphasic material, a mixture of porous and permeable solids and at least 10% of water or other interstitial fluid. [1] [2] The solid phase is a water insoluble three dimensional network of polymers, having absorbed a large amount of water or biological fluids.
The synthesis of nanocomposite hydrogels is a process that requires specific material and method. These polymers need to be made up of equally spaced out, 30 nm in diameter, clay platelets that can swell and exfoliate in the presence of water.
The characterization of mechanical properties in polymers typically refers to a measure of the strength, elasticity, viscoelasticity, and anisotropy of a polymeric material. The mechanical properties of a polymer are strongly dependent upon the Van der Waals interactions of the polymer chains, and the ability of the chains to elongate and align ...
Hydrogel encapsulation of the QDs opens up a new range of applications, such as: Biosensors; Enzymes and other bio-active molecules serve as biorecognition units while QDs serve as signalling units. By adding enzymes to the QD hydrogel network both units can be combined to form a biosensor. The enzymatic reaction that detects a particular ...
An example of this is hydrogel. With the ability to undergo shear thinning, hydrogels are well suited for the development of 3D printing. [27] Due to their stimuli responsive behavior, 3D printing of hydrogels has found applications in a diverse range of fields, such as soft robotics, tissue engineering, and flexible electronics. [49]
Drug-loaded dextran cross-linked hydrogel. Dextran hydrogels and dextran conjugate hydrogels are heavily cross-linked polymeric networks that have a strong affinity for water. These gels have soft, elastic physical properties and are biocompatible and biodegradable. [1] Dextran hydrogels have also been shown to be stable and safe in vivo. [2]