enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hamiltonian (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_(quantum...

    The Hamiltonian of a system represents the total energy of the system; that is, the sum of the kinetic and potential energies of all particles associated with the system. . The Hamiltonian takes different forms and can be simplified in some cases by taking into account the concrete characteristics of the system under analysis, such as single or several particles in the system, interaction ...

  3. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    The value (,) of the Hamiltonian is the total energy of the system, in this case the sum of kinetic and potential energy, traditionally denoted T and V, respectively. Here p is the momentum mv and q is the space coordinate.

  4. Hamiltonian system - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_system

    A Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics , this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field .

  5. Equipartition theorem - Wikipedia

    en.wikipedia.org/wiki/Equipartition_theorem

    The (Newtonian) kinetic energy of a particle of mass m, velocity v is given by = | | = (+ +), where v x, v y and v z are the Cartesian components of the velocity v.Here, H is short for Hamiltonian, and used henceforth as a symbol for energy because the Hamiltonian formalism plays a central role in the most general form of the equipartition theorem.

  6. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    [11]: 182 The Hilbert space for such a particle is the space of complex square-integrable functions on three-dimensional Euclidean space, and its Hamiltonian is the sum of a kinetic-energy term that is quadratic in the momentum operator and a potential-energy term: | = (^ + ^) | .

  7. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    The measurable values of the energy of a quantum system are given by the eigenvalues of the Hamiltonian operator, while its eigenstates give the possible energy states of the system. A value of energy is said to be degenerate if there exist at least two linearly independent energy states associated with it.

  8. AOL Mail

    mail.aol.com/d?reason=invalid_cred

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Molecular Hamiltonian - Wikipedia

    en.wikipedia.org/wiki/Molecular_Hamiltonian

    By quantizing the classical energy in Hamilton form one obtains the a molecular Hamilton operator that is often referred to as the Coulomb Hamiltonian. This Hamiltonian is a sum of five terms. This Hamiltonian is a sum of five terms.