Search results
Results from the WOW.Com Content Network
The cipher illustrated here uses a left shift of 3, so that (for example) each occurrence of E in the plaintext becomes B in the ciphertext. In cryptography, a Caesar cipher, also known as Caesar's cipher, the shift cipher, Caesar's code, or Caesar shift, is one of the simplest and most widely known encryption techniques.
ROT13 is a simple letter substitution cipher that replaces a letter with the 13th letter after it in the Latin alphabet.. ROT13 is a special case of the Caesar cipher which was developed in ancient Rome, used by Julius Caesar in the 1st century BC. [1]
To initialize the cipher, the key and IV are written into two of the shift registers, with the remaining bits starting in a fixed pattern; the cipher state is then updated 4 × 288 = 1152 times, so that every bit of the internal state depends on every bit of the key and of the IV in a complex nonlinear way.
ISAAC (indirection, shift, accumulate, add, and count) is a cryptographically secure pseudorandom number generator and a stream cipher designed by Robert J. Jenkins Jr. in 1993. [1] The reference implementation source code was dedicated to the public domain. [2] "I developed (...) tests to break a generator, and I developed the generator to ...
The Whirlpool hash function is a Merkle–Damgård construction based on an AES-like block cipher W in Miyaguchi–Preneel mode. [2] The block cipher W consists of an 8×8 state matrix of bytes, for a total of 512 bits. The encryption process consists of updating the state with four round functions over 10 rounds.
The table below shows the support of various stream ciphers. Stream ciphers are defined as using plain text digits that are combined with a pseudorandom cipher digit stream. Stream ciphers are typically faster than block ciphers and may have lower hardware complexity, but may be more susceptible to attacks.
The cipher's designers were David Wheeler and Roger Needham of the Cambridge Computer Laboratory, and the algorithm was presented in an unpublished technical report in 1997 (Needham and Wheeler, 1997). It is not subject to any patents. [1] Like TEA, XTEA is a 64-bit block Feistel cipher with a 128-bit key and a suggested 64 rounds
The Rijndael S-box can be replaced in the Rijndael cipher, [1] which defeats the suspicion of a backdoor built into the cipher that exploits a static S-box. The authors claim that the Rijndael cipher structure is likely to provide enough resistance against differential and linear cryptanalysis even if an S-box with "average" correlation ...