enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prim's algorithm - Wikipedia

    en.wikipedia.org/wiki/Prim's_algorithm

    A demo for Prim's algorithm based on Euclidean distance. In computer science, Prim's algorithm is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. The ...

  3. Distributed minimum spanning tree - Wikipedia

    en.wikipedia.org/wiki/Distributed_minimum...

    For example, Kruskal's algorithm processes edges in turn, deciding whether to include the edge in the MST based on whether it would form a cycle with all previously chosen edges. Both Prim's algorithm and Kruskal's algorithm require processes to know the state of the whole graph, which is very difficult to discover in the message-passing model.

  4. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.

  5. Maze generation algorithm - Wikipedia

    en.wikipedia.org/wiki/Maze_generation_algorithm

    An animation of generating a 30 by 20 maze using Prim's algorithm. This algorithm is a randomized version of Prim's algorithm. Start with a grid full of walls. Pick a cell, mark it as part of the maze. Add the walls of the cell to the wall list. While there are walls in the list: Pick a random wall from the list.

  6. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  7. Parallel algorithms for minimum spanning trees - Wikipedia

    en.wikipedia.org/wiki/Parallel_algorithms_for...

    Similarly to Prim's algorithm there are components in Kruskal's approach that can not be parallelised in its classical variant. For example, determining whether or not two vertices are in the same subtree is difficult to parallelise, as two union operations might attempt to join the same subtrees at the same time.

  8. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.

  9. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    A greedy algorithm is used to construct a Huffman tree during Huffman coding where it finds an optimal solution. In decision tree learning, greedy algorithms are commonly used, however they are not guaranteed to find the optimal solution. One popular such algorithm is the ID3 algorithm for decision tree construction.