enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Interatomic potential - Wikipedia

    en.wikipedia.org/wiki/Interatomic_potential

    Here is the one-body term, the two-body term, the three body term, the number of atoms in the system, the position of atom , etc. , and are indices that loop over atom positions. Note that in case the pair potential is given per atom pair, in the two-body term the potential should be multiplied by 1/2 as otherwise each bond is counted twice ...

  3. Lattice energy - Wikipedia

    en.wikipedia.org/wiki/Lattice_energy

    where is the lattice energy (i.e., the molar internal energy change), is the lattice enthalpy, and the change of molar volume due to the formation of the lattice. Since the molar volume of the solid is much smaller than that of the gases, Δ V m < 0 {\displaystyle \Delta V_{m}<0} .

  4. Born–Landé equation - Wikipedia

    en.wikipedia.org/wiki/Born–Landé_equation

    The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound.In 1918 [1] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.

  5. Vegard's law - Wikipedia

    en.wikipedia.org/wiki/Vegard's_law

    Here, a A (1-x) B x is the lattice parameter of the solid solution, a A and a B are the lattice parameters of the pure constituents, and x is the molar fraction of B in the solid solution. Vegard's law is seldom perfectly obeyed; often deviations from the linear behavior are observed. A detailed study of such deviations was conducted by King. [3]

  6. Empty lattice approximation - Wikipedia

    en.wikipedia.org/wiki/Empty_lattice_approximation

    In a one-dimensional lattice the number of reciprocal lattice vectors that determine the bands in an energy interval is limited to two when the energy rises. In two and three dimensional lattices the number of reciprocal lattice vectors that determine the free electron bands () increases more rapidly when the length of the wave vector increases ...

  7. Crystal structure prediction - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure_prediction

    This results in typical lattice and free energy differences between polymorphs that are often only a few kJ/mol, very rarely exceeding 10 kJ/mol. [10] Crystal structure prediction methods often locate many possible structures within this small energy range. These small energy differences are challenging to predict reliably without excessive ...

  8. Ising model - Wikipedia

    en.wikipedia.org/wiki/Ising_model

    An attractive interaction reduces the energy of two nearby atoms. If the attraction is only between nearest neighbors, the energy is reduced by −4JB i B j for each occupied neighboring pair. The density of the atoms can be controlled by adding a chemical potential, which is a multiplicative probability cost for adding one more atom. A ...

  9. Born–Mayer equation - Wikipedia

    en.wikipedia.org/wiki/Born–Mayer_equation

    The Born–Mayer equation is an equation that is used to calculate the lattice energy of a crystalline ionic compound.It is a refinement of the Born–Landé equation by using an improved repulsion term.