enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Flow-based generative model - Wikipedia

    en.wikipedia.org/wiki/Flow-based_generative_model

    A flow-based generative model is a generative model used in machine learning that explicitly models a probability distribution by leveraging normalizing flow, [1] [2] [3] which is a statistical method using the change-of-variable law of probabilities to transform a simple distribution into a complex one.

  3. Latent Dirichlet allocation - Wikipedia

    en.wikipedia.org/wiki/Latent_Dirichlet_allocation

    In evolutionary biology and bio-medicine, the model is used to detect the presence of structured genetic variation in a group of individuals. The model assumes that alleles carried by individuals under study have origin in various extant or past populations. The model and various inference algorithms allow scientists to estimate the allele ...

  4. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    Generative adversarial network; Flow-based generative model; Energy based model; Diffusion model; If the observed data are truly sampled from the generative model, then fitting the parameters of the generative model to maximize the data likelihood is a common method.

  5. Generative artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Generative_artificial...

    Generative artificial intelligence (generative AI, GenAI, [1] or GAI) is a subset of artificial intelligence that uses generative models to produce text, images, videos, or other forms of data. [ 2 ] [ 3 ] [ 4 ] These models learn the underlying patterns and structures of their training data and use them to produce new data [ 5 ] [ 6 ] based on ...

  6. Free energy principle - Wikipedia

    en.wikipedia.org/wiki/Free_energy_principle

    By equipping the generative model with hidden states that model control, policies (control sequences) that minimise variational free energy lead to high utility states. [ 51 ] Neurobiologically, neuromodulators such as dopamine are considered to report the precision of prediction errors by modulating the gain of principal cells encoding ...

  7. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.

  8. Energy-based model - Wikipedia

    en.wikipedia.org/wiki/Energy-based_model

    The first energy-based generative neural network is the generative ConvNet proposed in 2016 for image patterns, where the neural network is a convolutional neural network. [10] [11] The model has been generalized to various domains to learn distributions of videos, [7] [2] and 3D voxels. [12] They are made more effective in their variants.

  9. Retrieval-augmented generation - Wikipedia

    en.wikipedia.org/wiki/Retrieval-augmented_generation

    Retrieval-Augmented Generation (RAG) is a technique that grants generative artificial intelligence models information retrieval capabilities. It modifies interactions with a large language model (LLM) so that the model responds to user queries with reference to a specified set of documents, using this information to augment information drawn from its own vast, static training data.