Search results
Results from the WOW.Com Content Network
Structure of (acac)Rh(C 2 H 4)(C 2 F 4), distances (red) in picometers. [3]The bonding between alkenes and transition metals is described by the Dewar–Chatt–Duncanson model, which involves donation of electrons in the pi-orbital on the alkene to empty orbitals on the metal.
A typical example is shown below; note that if possible, the H is anti to the leaving group, even though this leads to the less stable Z-isomer. [27] An example of an E2 Elimination. Alkenes can be synthesized from alcohols via dehydration, in which case water is lost via the E1 mechanism. For example, the dehydration of ethanol produces ethylene:
The propane dehydrogenation process may be accomplished through different commercial technologies. The main differences between each of them concerns the catalyst employed, design of the reactor and strategies to achieve higher conversion rates. [1] Olefins are useful precursors to myriad products. Steam cracking is the core technology that ...
Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...
A 3D model of ethyne (), the simplest alkyneIn organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. [1] The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula C n H 2n−2.
In ETP, ethylene is dimerized to 1-butene, which is isomerized to 2-butenes. The 2-butenes are then subjected to metathesis with ethylene. Rhenium- and molybdenum-containing heterogeneous catalysis are used. Nowadays, only the "reverse" reaction is practiced, i.e., the conversion of ethylene and 2-butene to propylene: [2]
Representative processes include: [1] The Phillips Triolefin and the Olefin conversion technology. This process interconverts propylene with ethylene and 2-butenes. Rhenium and molybdenum catalysts are used. Nowadays, only the reverse reaction, i.e., the conversion of ethylene and 2-butene to propylene is industrially practiced, however. [6]
Ethene and oxygen are passed co-currently in a reaction tower at about 130 °C and 400 kPa. [27] The catalyst is an aqueous solution of PdCl 2 and CuCl 2 . The acetaldehyde is purified by extractive distillation followed by fractional distillation .