Search results
Results from the WOW.Com Content Network
In quantum optics, superradiance is a phenomenon that occurs when a group of N emitters, such as excited atoms, interact with a common light field. If the wavelength of the light is much greater than the separation of the emitters, [2] then the emitters interact with the light in a collective and coherent fashion. [3]
Schematic representation of the difference between Dicke superradiance and the superradiant transition of the open Dicke model. The superradiant transition of the open Dicke model is related to, but differs from, Dicke superradiance. Dicke superradiance is a collective phenomenon in which many two-level systems emit photons coherently in free ...
Despite the original model of the superradiance the quantum electromagnetic field is totally neglected here. The oscillators may be assumed to be placed for example on the cubic lattice with the lattice constant in the analogy to the crystal system of the condensed matter. The worse scenario of the defect of the absence of the two out-of-the ...
A well known example of a two-state system is the spin of a spin-1/2 particle such as an electron, whose spin can have values +ħ/2 or −ħ/2, where ħ is the reduced Planck constant. The two-state system cannot be used as a description of absorption or decay, because such processes require coupling to a continuum.
A superradiant laser is a laser that does not rely on a large population of photons within the laser cavity to maintain coherence. [1] [2]Rather than relying on photons to store phase coherence, it relies on collective effects in an atomic medium to store coherence.
FROG, however, solved the problem by measuring an "auto-spectrogram" of the pulse, in which the pulse gates itself in a nonlinear optical medium and the resulting gated piece of the pulse is then spectrally resolved as a function of the delay between the two pulses. Retrieval of the pulse from its FROG trace is accomplished by using a two ...
A classical particle has a definite position and momentum, and hence it is represented by a point in phase space. Given a collection of particles, the probability of finding a particle at a certain position in phase space is specified by a probability distribution, the Liouville density.
GRB 080319B, for example, was accompanied by an optical counterpart that peaked at a visible magnitude of 5.8, [93] comparable to that of the dimmest naked-eye stars despite the burst's distance of 7.5 billion light years. This combination of brightness and distance implies an extremely energetic source.