Search results
Results from the WOW.Com Content Network
Here are the conversion factors for those various expressions of wind speed: 1 m/s = 2.237 statute mile/h = 1.944 knots 1 knot = 1.151 statute mile/h = 0.514 m/s 1 statute mile/h = 0.869 knots = 0.447 m/s. Note: 1 statute mile = 5,280 feet = 1,609 meters
The conversion equations depend on the temperature at which the conversion is wanted (usually about 20 to 25 °C). At an ambient sea level atmospheric pressure of 1 atm (101.325 kPa or 1.01325 bar), the general equation is:
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
This page publishes {{}} units, configured and explained in detail at Module:Val/units.. When you enter a unit code to one of Val's four unit parameter—|u=, |up=, |ul= or |upl=— the unit code is translated as shown in this report.
Calcium and magnesium ions present as sulfates, chlorides, carbonates and bicarbonates cause water to be hard. Water chemists measure water impurities in parts per million (ppm).
TSS of a water or wastewater sample is determined by pouring a carefully measured volume of water (typically one litre; but less if the particulate density is high, or as much as two or three litres for very clean water) through a pre-weighed filter of a specified pore size, then weighing the filter again after the drying process that removes all water on the filter.
This is equivalent to about ninety seconds out of one day. One part per ten thousand is denoted by the permyriad sign (‱). Although rarely used in science (ppm is typically used instead), one permyriad has an unambiguous value of one part per 10,000 (10 4) parts, and a value of 10 −4. This is equivalent to about nine seconds out of one day.
The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]