enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Another important class of problems involves cantilever beams. The bending moments (), shear forces (), and deflections for a cantilever beam subjected to a point load at the free end and a uniformly distributed load are given in the table below. [5]

  3. Cantilever method - Wikipedia

    en.wikipedia.org/wiki/Cantilever_method

    The cantilever method is an approximate method for calculating shear forces and moments developed in beams and columns of a frame or structure due to lateral loads. The applied lateral loads typically include wind loads and earthquake loads, which must be taken into consideration while designing buildings.

  4. Cantilever - Wikipedia

    en.wikipedia.org/wiki/Cantilever

    A cantilever is a rigid structural element that extends horizontally and is unsupported at one end. Typically it extends from a flat vertical surface such as a wall, to which it must be firmly attached. Like other structural elements, a cantilever can be formed as a beam, plate, truss, or slab.

  5. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    The safe design of structures requires a design approach which takes account of the statistical likelihood of the failure of the structure. Structural design codes are based upon the assumption that both the loads and the material strengths vary with a normal distribution. [citation needed]

  6. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    Fig. 2: Column effective length factors for Euler's critical load. In practical design, it is recommended to increase the factors as shown above. The following assumptions are made while deriving Euler's formula: [3] The material of the column is homogeneous and isotropic. The compressive load on the column is axial only.

  7. Overconstrained mechanism - Wikipedia

    en.wikipedia.org/wiki/Overconstrained_mechanism

    The reason of over-constraint is the unique geometry of linkages in these mechanisms, which the mobility formula does not take into account. This unique geometry gives rise to "redundant constraints", i.e. when multiple joints are constraining the same degrees of freedom. These redundant constraints are the reason of the over-constraint.

  8. Design optimization - Wikipedia

    en.wikipedia.org/wiki/Design_optimization

    Design optimization applies the methods of mathematical optimization to design problem formulations and it is sometimes used interchangeably with the term engineering optimization. When the objective function f is a vector rather than a scalar , the problem becomes a multi-objective optimization one.

  9. Constraint (computer-aided design) - Wikipedia

    en.wikipedia.org/wiki/Constraint_(computer-aided...

    The shaft and pulleys share a common centerline. The constraints of the key are set in relation to the keyseat. A constraint in computer-aided design (CAD) software is a limitation or restriction imposed by a designer or an engineer upon geometric properties [1]: 203 of an entity of a design model (i.e. sketch) that maintains its structure as the model is manipulated.