Search results
Results from the WOW.Com Content Network
That is, convert polar coordinates to Cartesian coordinates. Then compute the arithmetic mean of these points. The resulting point will lie within the unit disk but generally not on the unit circle. Convert that point back to polar coordinates. The angle is a reasonable mean of the input angles. The resulting radius will be 1 if all angles are ...
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.
sc is a cross-platform, free, TUI, spreadsheet and calculator application that runs on Unix and Unix-like operating systems. It has also been ported to Windows. It can be accessed through a terminal emulator, and has a simple interface and keyboard shortcuts resembling the key bindings of the Vim text editor. It can be used in a similar manner ...
The sine and tangent small-angle approximations are used in relation to the double-slit experiment or a diffraction grating to develop simplified equations like the following, where y is the distance of a fringe from the center of maximum light intensity, m is the order of the fringe, D is the distance between the slits and projection screen ...
Scientific calculators have buttons for calculating the main trigonometric functions (sin, cos, tan, and sometimes cis and their inverses). [51] Most allow a choice of angle measurement methods: degrees, radians, and sometimes gradians. Most computer programming languages provide function libraries that include the trigonometric functions. [52]
C is the Equation of the center value needed to calculate lambda (see next equation). 1.9148 is the coefficient of the Equation of the Center for the planet the observer is on (in this case, Earth) Ecliptic longitude
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
The sine and the cosine functions, for example, are used to describe simple harmonic motion, which models many natural phenomena, such as the movement of a mass attached to a spring and, for small angles, the pendular motion of a mass hanging by a string. The sine and cosine functions are one-dimensional projections of uniform circular motion.