Search results
Results from the WOW.Com Content Network
For example, a two-dimensional array A with three rows and four columns might provide access to the element at the 2nd row and 4th column by the expression A[1][3] in the case of a zero-based indexing system. Thus two indices are used for a two-dimensional array, three for a three-dimensional array, and n for an n-dimensional array.
For example, in the Pascal programming language, the declaration type MyTable = array [1..4,1..2] of integer, defines a new array data type called MyTable. The declaration var A: MyTable then defines a variable A of that type, which is an aggregate of eight elements, each being an integer variable identified by two indices.
Similarly simple is representing a multi-dimensional array as a single 1-dimensional array, together with its dimensions. For example, representing an m × n array as a single list of length m·n , together with the numbers m and n (instead of as a 1-dimensional array of pointers to each 1-dimensional subarray).
Things become more interesting when we consider arrays with more than one index, for example, a two-dimensional table. We have three possibilities: make the two-dimensional array one-dimensional by computing a single index from the two; consider a one-dimensional array where each element is another one-dimensional array, i.e. an array of arrays
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
An Iliffe vector for an n-dimensional array (where n ≥ 2) consists of a vector (or 1-dimensional array) of pointers to an (n − 1)-dimensional array. They are often used to avoid the need for expensive multiplication operations when performing address calculation on an array element.
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine.
For example, a 2,1 represents the element at the second row and first column of the matrix. In mathematics, a matrix (pl.: matrices) is a rectangular array or table of numbers, symbols, or expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object.