Search results
Results from the WOW.Com Content Network
The central angle of a square is equal to 90° (360°/4). The external angle of a square is equal to 90°. The diagonals of a square are equal and bisect each other, meeting at 90°. The diagonal of a square bisects its internal angle, forming adjacent angles of 45°. All four sides of a square are equal. Opposite sides of a square are parallel.
Examples of broken diagonals from the number square in the image are as follows: 3,12,14,5; 10,1,7,16; 10,13,7,4; 15,8,2,9; 15,12,2,5; and 6,13,11,4. The fact that this square is a pandiagonal magic square can be verified by checking that all of its broken diagonals add up to the same constant: 3+12+14+5 = 34 10+1+7+16 = 34 10+13+7+4 = 34. One ...
A magic square is an arrangement of numbers in a square grid so that the sum of the numbers along every row, column, and diagonal is the same. Similarly, one may define a magic cube to be an arrangement of numbers in a cubical grid so that the sum of the numbers on the four space diagonals must be the same as the sum of the numbers in each row, each column, and each pillar.
Consider the sum 1+2+3+5+6+7 = 24. This sum can be divided in half by taking the appropriate groups of three addends, or in thirds using groups of two addends: 1+5+6 = 2+3+7 = 12 1+7 = 2+6 = 3+5 = 8. An additional equal partitioning of the sum of squares guarantees the semi-bimagic property noted below: 1 2 + 5 2 + 6 2 = 2 2 + 3 2 + 7 2 = 62
Odd squares: For the 3×3 odd square, since α, β, and γ are in arithmetic progression, their sum is equal to the product of the square's order and the middle term, i.e. α + β + γ = 3 β. Thus, the diagonal sums will be equal if we have βs in the main diagonal and α, β, γ in the skew diagonal. Similarly, for the Latin square.
Four of these orthogons are harmonic rectangles: the diagon or root-2 rectangle is produced by projecting the diagonal of a square; the sixton, hecton or root-3 rectangle is produced by projecting the diagonal of a diagon; the double square or root-4 rectangle is produced by projecting the diagonal of an hecton; the root-5 rectangle is produced ...
If an horizontal line is drawn through the intersection point of the diagonal and the internal edge of the square, the original golden rectangle and the two scaled copies along the diagonal have linear sizes in the ratios ::, the square and rectangle opposite the diagonal both have areas equal to . [10]
For a square matrix, the diagonal (or main diagonal or principal diagonal) is the diagonal line of entries running from the top-left corner to the bottom-right corner. [ 1 ] [ 2 ] [ 3 ] For a matrix A {\displaystyle A} with row index specified by i {\displaystyle i} and column index specified by j {\displaystyle j} , these would be entries A i ...