Search results
Results from the WOW.Com Content Network
One says that “the affine plane does not have a good intersection theory”, and intersection theory on non-projective varieties is much more difficult. A line on a P 1 × P 1 (which can also be interpreted as the non-singular quadric Q in P 3) has self-intersection 0, since a line can be moved off itself. (It is a ruled surface.)
In algebraic geometry, the scheme-theoretic intersection of closed subschemes X, Y of a scheme W is , the fiber product of the closed immersions,. It is denoted by X ∩ Y {\displaystyle X\cap Y} . Locally, W is given as Spec R {\displaystyle \operatorname {Spec} R} for some ring R and X , Y as Spec ( R / I ) , Spec ( R / J ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
The intersection (red) of two disks (white and red with black boundaries). The circle (black) intersects the line (purple) in two points (red). The disk (yellow) intersects the line in the line segment between the two red points. The intersection of D and E is shown in grayish purple. The intersection of A with any of B, C, D, or E is the empty ...
Intersection theory may refer to: Intersection theory, especially in algebraic geometry; Intersection (set theory) This page was last edited on 28 ...
There will be an intersection if 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1. The intersection point falls within the first line segment if 0 ≤ t ≤ 1, and it falls within the second line segment if 0 ≤ u ≤ 1. These inequalities can be tested without the need for division, allowing rapid determination of the existence of any line segment ...
The study of moduli spaces of curves, maps and other geometric objects, sometimes via the theory of quantum cohomology. The study of quantum cohomology, Gromov–Witten invariants and mirror symmetry gave a significant progress in Clemens conjecture. Enumerative geometry is very closely tied to intersection theory. [1]