Search results
Results from the WOW.Com Content Network
In the base ten number system, integer powers of 10 are written as the digit 1 followed or preceded by a number of zeroes determined by the sign and magnitude of the exponent. For example, 10 3 = 1000 and 10 −4 = 0.0001. Exponentiation with base 10 is used in scientific notation to denote large or small numbers.
Fourth power. In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So: n4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n4 as n “ tesseracted ”, “ hypercubed ...
Power of 10. Visualisation of powers of 10 from one to 1 trillion. A power of 10 is any of the integer powers of the number ten; in other words, ten multiplied by itself a certain number of times (when the power is a positive integer). By definition, the number one is a power (the zeroth power) of ten. The first few non-negative powers of ten ...
To put in perspective the size of a googol, the mass of an electron, just under 10 −30 kg, can be compared to the mass of the visible universe, estimated at between 10 50 and 10 60 kg. [5] It is a ratio in the order of about 10 80 to 10 90, or at most one ten-billionth of a googol (0.00000001% of a googol).
The number n is called the exponent and the expression is known formally as exponentiation of b by n or the exponential of n with base b. It is more commonly expressed as "the n th power of b ", " b to the n th power" or " b to the power n ". For example, the fourth power of 10 is 10,000 because 104 = 10 × 10 × 10 × 10 = 10,000.
Knuth's up-arrow notation. In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. [1] In his 1947 paper, [2] R. L. Goodstein introduced the specific sequence of operations that are now called hyperoperations. Goodstein also suggested the Greek names tetration, pentation ...
Exponential functions with bases 2 and 1/2. The exponential function is a mathematical function denoted by () = or (where the argument x is written as an exponent).Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras.
The naming procedure for large numbers is based on taking the number n occurring in 10 3n+3 (short scale) or 10 6n (long scale) and concatenating Latin roots for its units, tens, and hundreds place, together with the suffix -illion. In this way, numbers up to 10 3·999+3 = 10 3000 (short scale) or 10 6·999 = 10 5994 (long scale) may be named.