Search results
Results from the WOW.Com Content Network
Exponential decay. A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant (λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.
Calculus. In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: The first terms of the series sum to approximately , where is the natural logarithm and is the Euler–Mascheroni constant. Because the logarithm has arbitrarily large values, the harmonic series does not have a finite limit: it ...
Rate equation. In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only ...
A. 1685. Graph of the equation y = 1/x. Here, e is the unique number larger than 1 that makes the shaded area under the curve equal to 1. The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.
Geometric series. The geometric series 1/4 + 1/16 + 1/64 + 1/256 + ... shown as areas of purple squares. Each of the purple squares has 1/4 of the area of the next larger square (1/2× 1/2 = 1/4, 1/4×1/4 = 1/16, etc.). The sum of the areas of the purple squares is one third of the area of the large square. Another geometric series (coefficient ...
Manning formula. The Manning formula or Manning's equation is an empirical formula estimating the average velocity of a liquid in an open channel flow (flowing in a conduit that does not completely enclose the liquid). However, this equation is also used for calculation of flow variables in case of flow in partially full conduits, as they also ...
If the car is behind door 1, the host can open either door 2 or door 3, so the probability that the car is behind door 1 and the host opens door 3 is 1 / 3 × 1 / 2 = 1 / 6 . If the car is behind door 2 – with the player having picked door 1 – the host must open door 3, such the probability that the car is behind door ...
For example, 1/2.5 converts to 2/5 as a simple fraction, or 0.4 as a decimal number. This "inch" system gives a result approximately 1.5 times the length of the diagonal of the sensor. This "inch" system gives a result approximately 1.5 times the length of the diagonal of the sensor.