Search results
Results from the WOW.Com Content Network
Diffusion models themselves can be used to perform upscaling. Cascading diffusion model stacks multiple diffusion models one after another, in the style of Progressive GAN. The lowest level is a standard diffusion model that generate 32x32 image, then the image would be upscaled by a diffusion model specifically trained for upscaling, and the ...
This is the backbone of the Stable Diffusion architecture. Classifier-Free Diffusion Guidance (2022). [29] This paper describes CFG, which allows the text encoding vector to steer the diffusion model towards creating the image described by the text. SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis (2023). [20 ...
The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [ 3 ] Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian ) on training images.
The Fréchet inception distance (FID) is a metric used to assess the quality of images created by a generative model, like a generative adversarial network (GAN) [1] or a diffusion model. [2] [3] The FID compares the distribution of generated images with the distribution of a set of real images (a "ground truth" set).
Analogously, a classifier based on a generative model is a generative classifier, while a classifier based on a discriminative model is a discriminative classifier, though this term also refers to classifiers that are not based on a model. Standard examples of each, all of which are linear classifiers, are: generative classifiers:
A classifier can be reinterpreted as joint energy-based model Joint energy-based models (JEM), proposed in 2020 by Grathwohl et al., allow any classifier with softmax output to be interpreted as energy-based model.
Random Forests classifier description (Leo Breiman's site) Liaw, Andy & Wiener, Matthew "Classification and Regression by randomForest" R News (2002) Vol. 2/3 p. 18 (Discussion of the use of the random forest package for R )
U-Net is a convolutional neural network that was developed for image segmentation. [1] The network is based on a fully convolutional neural network [2] whose architecture was modified and extended to work with fewer training images and to yield more precise segmentation.