Search results
Results from the WOW.Com Content Network
try {// Normal execution path. throw new EmptyStackException ();} catch (ExampleException ee) {// Deal with the ExampleException.} finally {// Always run when leaving the try block (including finally clauses), regardless of whether any exceptions were thrown or whether they were handled. // Cleans up and closes resources acquired in the try block.
The statements within the try block are executed, and if any of them throws an exception, execution of the block is discontinued and the exception is handled by the catch block. There may be multiple catch blocks, in which case the first block with an exception variable whose type matches the type of the thrown exception is executed.
Also common is a related clause (finally or ensure) that is executed whether an exception occurred or not, typically to release resources acquired within the body of the exception-handling block. Notably, C++ does not provide this construct, recommending instead the Resource Acquisition Is Initialization (RAII) technique which frees resources ...
Social pressure is a major influence on the scope of exceptions and use of exception-handling mechanisms, i.e. "examples of use, typically found in core libraries, and code examples in technical books, magazine articles, and online discussion forums, and in an organization’s code standards". [10]
In Object Pascal, D, Java, C#, and Python a finally clause can be added to the try construct. No matter how control leaves the try the code inside the finally clause is guaranteed to execute. This is useful when writing code that must relinquish an expensive resource (such as an opened file or a database connection) when finished processing:
In Java—and similar languages modeled after it, like JavaScript—it is possible to execute code even after return statement, because the finally block of a try-catch structure is always executed. So if the return statement is placed somewhere within try or catch blocks the code within finally (if added) will be executed. It is even possible ...
A common reason for using try-finally blocks is to guard resource managing code, thus guaranteeing the release of precious resources in the finally block. C# features the using statement as a syntactic shorthand for this common scenario, in which the Dispose() method of the object of the using is always called.
First, the async keyword indicates to C# that the method is asynchronous, meaning that it may use an arbitrary number of await expressions and will bind the result to a promise. [1]: 165–168 The return type, Task<T>, is C#'s analogue to the concept of a promise, and here is indicated to have a result value of type int.