enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.

  3. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    It is the algebra of the set-theoretic operations of union, intersection and complementation, and the relations of equality and inclusion. For a basic introduction to sets see the article on sets, for a fuller account see naive set theory, and for a full rigorous axiomatic treatment see axiomatic set theory.

  4. Choice function - Wikipedia

    en.wikipedia.org/wiki/Choice_function

    Given two sets and , let be a multivalued map from to (equivalently, : is a function from to the power set of ).. A function : is said to be a selection of , if: (() ()).The existence of more regular choice functions, namely continuous or measurable selections is important in the theory of differential inclusions, optimal control, and mathematical economics. [2]

  5. Lévy hierarchy - Wikipedia

    en.wikipedia.org/wiki/Lévy_hierarchy

    In the language of set theory, atomic formulas are of the form x = y or x ∈ y, standing for equality and set membership predicates, respectively. The first level of the Lévy hierarchy is defined as containing only formulas with no unbounded quantifiers and is denoted by Δ 0 = Σ 0 = Π 0 {\displaystyle \Delta _{0}=\Sigma _{0}=\Pi _{0}} . [ 1 ]

  6. Disjoint sets - Wikipedia

    en.wikipedia.org/wiki/Disjoint_sets

    In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two or more sets is ...

  7. Supermodular function - Wikipedia

    en.wikipedia.org/wiki/Supermodular_function

    In mathematics, a supermodular function is a function on a lattice that, informally, has the property of being characterized by "increasing differences." Seen from the point of set functions, this can also be viewed as a relationship of "increasing returns", where adding more elements to a subset increases its valuation.

  8. Class (set theory) - Wikipedia

    en.wikipedia.org/wiki/Class_(set_theory)

    In other set theories, such as New Foundations or the theory of semisets, the concept of "proper class" still makes sense (not all classes are sets) but the criterion of sethood is not closed under subsets. For example, any set theory with a universal set has proper classes which are subclasses of sets.

  9. Budget set - Wikipedia

    en.wikipedia.org/wiki/Budget_set

    The budget set is bounded above by a -dimensional budget hyperplane characterized by the equation =, which in the two-good case corresponds to the budget line. Graphically, the budget set is the subset of R + k {\displaystyle \mathbb {R} _{+}^{k}} that contains all the consumption bundles that lie on or below the budget hyperplane.