Search results
Results from the WOW.Com Content Network
At 25 °C (77 °F), solutions of which the pH is less than 7 are acidic, and solutions of which the pH is greater than 7 are basic. Solutions with a pH of 7 at 25 °C are neutral (i.e. have the same concentration of H + ions as OH − ions, i.e. the same as pure water). The neutral value of the pH depends on the temperature and is lower than 7 ...
Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 = 9,808,357 + 0.09543. We can then get 10 9,808,357 × 10 0.09543 ≈ 1.25 × ...
With specific values for C a and K a this quadratic equation can be solved for x. Assuming [4] that pH = −log 10 [H +] the pH can be calculated as pH = −log 10 x. If the degree of dissociation is quite small, C a ≫ x and the expression simplifies to = and pH = 1 / 2 (pK a − log C a).
K 1, K 2 and DIC each have units of a concentration, e.g. mol/L. A Bjerrum plot is obtained by using these three equations to plot these three species against pH = −log 10 [H +] eq, for given K 1, K 2 and DIC. The fractions in these equations give the three species' relative proportions, and so if DIC is unknown, or the actual concentrations ...
Graph of the number of primes ending in 1, 3, 7, and 9 up to n for n < 10 000. Another example is the distribution of the last digit of prime numbers. Except for 2 and 5, all prime numbers end in 1, 3, 7, or 9. Dirichlet's theorem states that asymptotically, 25% of all primes end in each of these four digits.
Because log(x) is the sum of the terms of the form log(1 + 2 −k) corresponding to those k for which the factor 1 + 2 −k was included in the product P, log(x) may be computed by simple addition, using a table of log(1 + 2 −k) for all k. Any base may be used for the logarithm table.
[10]: 280–4 Hence, a single experiment can be used to measure the logarithms of the partition coefficient (log P) giving the distribution of molecules that are primarily neutral in charge, as well as the distribution coefficient (log D) of all forms of the molecule over a pH range, e.g., between 2 and 12.
The Henderson–Hasselbalch equation can be used to model these equilibria. It is important to maintain this pH of 7.4 to ensure enzymes are able to work optimally. [10] Life threatening Acidosis (a low blood pH resulting in nausea, headaches, and even coma, and convulsions) is due to a lack of functioning of enzymes at a low pH. [10]