Search results
Results from the WOW.Com Content Network
The paper written by Leonhard Euler on the Seven Bridges of Königsberg and published in 1736 is regarded as the first paper in the history of graph theory. [20] This paper, as well as the one written by Vandermonde on the knight problem , carried on with the analysis situs initiated by Leibniz .
This is a list of graph theory topics, by Wikipedia page. See glossary of graph theory for basic terminology. Examples and types of graphs. Amalgamation;
The Journal of Graph Theory is a peer-reviewed mathematics journal specializing in graph theory and related areas, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs.
The web graph W 4,2 is a cube. The web graph W n,r is a graph consisting of r concentric copies of the cycle graph C n, with corresponding vertices connected by "spokes". Thus W n,1 is the same graph as C n, and W n,2 is a prism. A web graph has also been defined as a prism graph Y n+1, 3, with the edges of the outer cycle removed. [7] [10]
Graph Theory, 1736–1936 is a book in the history of mathematics on graph theory.It focuses on the foundational documents of the field, beginning with the 1736 paper of Leonhard Euler on the Seven Bridges of Königsberg and ending with the first textbook on the subject, published in 1936 by Dénes KÅ‘nig.
Spectral graph theory emerged in the 1950s and 1960s. Besides graph theoretic research on the relationship between structural and spectral properties of graphs, another major source was research in quantum chemistry, but the connections between these two lines of work were not discovered until much later. [15]
Algebraic graph theory is a branch of mathematics in which algebraic methods are applied to problems about graphs. This is in contrast to geometric, combinatoric, or algorithmic approaches. There are three main branches of algebraic graph theory, involving the use of linear algebra, the use of group theory, and the study of graph invariants.
Advances in Operator Theory; Advances in Theoretical and Mathematical Physics; Algebra & Number Theory; Algebra Colloquium; Algebra i Logika; Algebra Universalis; Algebraic & Geometric Topology; Algebraic Combinatorics; American Journal of Mathematics; American Mathematical Monthly; Analysis and Applications; The Analyst, or, Mathematical Museum