Search results
Results from the WOW.Com Content Network
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [1]: 3 It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology.
In fluid statics, capillary pressure is the pressure between two immiscible fluids in a thin tube (see capillary action), resulting from the interactions of forces between the fluids and solid walls of the tube. Capillary pressure can serve as both an opposing or driving force for fluid transport and is a significant property for research and ...
This will result in another viscosity value if the fluid is a non-Newtonian fluid such as paint, but it will give the same viscosity value for a Newtonian fluid such as water, petroleum oil or gas. If another parameter like temperature, T {\displaystyle T} , is changed, and the experiment is repeated with the same force, a new value for ...
For example, these physical constraints induce regions of the fluid to exhibit new properties not observed in bulk, e.g. vastly increased viscosity near the pore wall; they may effect changes in thermodynamic properties and may also alter the chemical reactivity of species at the fluid-solid interface.
A thixotropic fluid is one that takes time to attain viscosity equilibrium when introduced to a step change in shear rate. When shearing in a thixotropic fluid exceeds a certain threshold, it results in a breakdown of the fluid's microstructure and the exhibition of a shear thinning property.
The term capillary constant is somewhat misleading, because it is important to recognize that is a composition of variable quantities, for example the value of surface tension will vary with temperature and the density difference will change depending on the fluids involved at an interface interaction.
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a nearly constant volume independent of pressure. It is one of the four fundamental states of matter (the others being solid, gas, and plasma), and is the only state with a definite volume but no fixed shape.
In computational fluid dynamics the numerical solution of the governing equations can yield all the fluid properties in space and time. This overwhelming amount of information must be displayed in a meaningful form. Thus flow visualization is equally important in computational as in experimental fluid dynamics.