Search results
Results from the WOW.Com Content Network
Energy is a scalar quantity, and the mechanical energy of a system is the sum of the potential energy (which is measured by the position of the parts of the system) and the kinetic energy (which is also called the energy of motion): [1] [2]
For ionising radiation, the gray is the SI unit of specific energy absorbed by matter known as absorbed dose, from which the SI unit the sievert is calculated for the stochastic health effect on tissues, known as dose equivalent.
The Helmholtz free energy is defined as [3], where . F is the Helmholtz free energy (sometimes also called A, particularly in the field of chemistry) (SI: joules, CGS: ergs),; U is the internal energy of the system (SI: joules, CGS: ergs),
The adjective kinetic has its roots in the Greek word κίνησις kinesis, meaning "motion".The dichotomy between kinetic energy and potential energy can be traced back to Aristotle's concepts of actuality and potentiality.
The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] It is equal to the amount of work done when a force of one newton displaces a mass through a distance of one metre in the direction of that force.
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
The Arrhenius equation gives the quantitative basis of the relationship between the activation energy and the rate at which a reaction proceeds. From the equation, the activation energy can be found through the relation = / ()
Mass near the M87* black hole is converted into a very energetic astrophysical jet, stretching five thousand light years. In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement.