enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetosphere - Wikipedia

    en.wikipedia.org/wiki/Magnetosphere

    The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...

  3. Earth's magnetic field - Wikipedia

    en.wikipedia.org/wiki/Earth's_magnetic_field

    Shorter time scales mostly arise from currents in the ionosphere (ionospheric dynamo region) and magnetosphere, and some changes can be traced to geomagnetic storms or daily variations in currents. Changes over time scales of a year or more mostly reflect changes in the Earth's interior, particularly the iron-rich core. [13]

  4. Magnetic mirror point - Wikipedia

    en.wikipedia.org/wiki/Magnetic_mirror_point

    Since the forces that generate our magnetic field are constantly changing, the field itself is also in continual flux, its strength waxing and waning over time. This causes the location of Earth's magnetic north and south poles to gradually shift, and to even completely flip locations every 300,000 years or so.

  5. Earth’s magnetic north pole is on the move, and scientists ...

    www.aol.com/news/earth-magnetic-north-pole-move...

    This image shows magnetic declination, or the angle between magnetic and geographic north, according to the World Magnetic Model released in 2025.

  6. Plasmasphere - Wikipedia

    en.wikipedia.org/wiki/Plasmasphere

    The plasmasphere, or inner magnetosphere, is a region of the Earth's magnetosphere consisting of low-energy (cool) plasma. It is located above the ionosphere . The outer boundary of the plasmasphere is known as the plasmapause , which is defined by an order of magnitude drop in plasma density.

  7. Magnetosphere particle motion - Wikipedia

    en.wikipedia.org/wiki/Magnetosphere_particle_motion

    The amount of solar wind energy and plasma entering the actual magnetosphere depends on how far it departs from such a "closed" configuration, i.e. the extent to which Interplanetary Magnetic Field field lines manage to cross the boundary. As discussed further below, that extent depends very much on the direction of the Interplanetary Magnetic ...

  8. Interplanetary magnetic field - Wikipedia

    en.wikipedia.org/wiki/Interplanetary_magnetic_field

    Since 1997, the solar magnetic field has been monitored in real time by the Advanced Composition Explorer (ACE) satellite located in a halo orbit at the Sun–Earth Lagrange Point L1; since July 2016, it has been monitored by the Deep Space Climate Observatory (DSCOVR) satellite, also at the Sun–Earth L1 (with the ACE continuing to serve as a ...

  9. Mercury's magnetic field - Wikipedia

    en.wikipedia.org/wiki/Mercury's_magnetic_field

    Because of the planet's slow rotation, the resulting magnetic field is dominated by small-scale components that fluctuate quickly with time. Due to the weak internally generated magnetic field it is also possible that the magnetic field generated by the magnetopause currents exhibits a negative feedback on the dynamo processes, thereby causing ...