Search results
Results from the WOW.Com Content Network
Aerobic respiration requires oxygen (O 2) in order to create ATP.Although carbohydrates, fats and proteins are consumed as reactants, aerobic respiration is the preferred method of pyruvate production in glycolysis, and requires pyruvate to the mitochondria in order to be oxidized by the citric acid cycle.
A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi.Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. [2]
As a result, 10 NADH molecules (from glycolysis and the Krebs cycle), along with 2 FADH 2 molecules, can form a total of 34 ATPs during aerobic respiration (from a single electron transport chain). This means that combined with the Krebs Cycle and glycolysis , the efficiency for the electron transport chain is about 65%, as compared to only 3.5 ...
The mitochondrial matrix contains the mitochondrial DNA, ribosomes, soluble enzymes, small organic molecules, nucleotide cofactors, and inorganic ions. [1] The enzymes in the matrix facilitate reactions responsible for the production of ATP , such as the citric acid cycle , oxidative phosphorylation , oxidation of pyruvate , and the beta ...
The last steps of this process occur in mitochondria. The reduced molecules NADH and FADH 2 are generated by the Krebs cycle, glycolysis, and pyruvate processing. These molecules pass electrons to an electron transport chain, which releases the energy of oxygen to create a proton gradient across the inner mitochondrial membrane.
After malate reaches the mitochondrial matrix, it is converted by mitochondrial malate dehydrogenase into oxaloacetate, during which NAD + is reduced with two electrons to form NADH. Oxaloacetate is then transformed into aspartate (since oxaloacetate cannot be transported into the cytosol) by mitochondrial aspartate aminotransferase.
NADH is then no longer oxidized and the citric acid cycle ceases to operate because the concentration of NAD + falls below the concentration that these enzymes can use. Many site-specific inhibitors of the electron transport chain have contributed to the present knowledge of mitochondrial respiration.
This acetyl-CoA then enters the mitochondrial tricarboxylic acid cycle (TCA cycle). Both the fatty acid beta-oxidation and the TCA cycle produce NADH and FADH 2, which are used by the electron transport chain to generate ATP. Fatty acids are oxidized by most of the tissues in the body.