Search results
Results from the WOW.Com Content Network
The elevation is the signed angle from the x-y reference plane to the radial line segment OP, where positive angles are designated as upward, towards the zenith reference. Elevation is 90 degrees (= π / 2 radians) minus inclination. Thus, if the inclination is 60 degrees (= π / 3 radians), then the elevation is 30 degrees ...
The point scale factor is independent of direction. It is a function of y on the projection. (On the sphere it depends on latitude only.) The scale is true on the equator. • The point scale factor is independent of direction. It is a function of x on the projection. (On the sphere it depends on both latitude and longitude.)
Such a scaling changes the diameter of an object by a factor between the scale factors, the area by a factor between the smallest and the largest product of two scale factors, and the volume by the product of all three. The scaling is uniform if and only if the scaling factors are equal (v x = v y = v z). If all except one of the scale factors ...
The AOL.com video experience serves up the best video content from AOL and around the web, curating informative and entertaining snackable videos.
at latitude 45° the scale factor is k = sec 45° ≈ 1.41, at latitude 60° the scale factor is k = sec 60° = 2, at latitude 80° the scale factor is k = sec 80° ≈ 5.76, at latitude 85° the scale factor is k = sec 85° ≈ 11.5. The area scale factor is the product of the parallel and meridian scales hk = sec 2 φ.
The solid angle of a sphere measured from any point in its interior is 4 π sr. The solid angle subtended at the center of a cube by one of its faces is one-sixth of that, or 2 π /3 sr. The solid angle subtended at the corner of a cube (an octant) or spanned by a spherical octant is π /2 sr, one-eight of the solid angle of a sphere. [1]
In each zone the scale factor of the central meridian reduces the diameter of the transverse cylinder to produce a secant projection with two standard lines, or lines of true scale, about 180 km on each side of, and about parallel to, the central meridian (Arc cos 0.9996 = 1.62° at the Equator). The scale is less than 1 inside the standard ...
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).