Search results
Results from the WOW.Com Content Network
Price and total revenue have a negative relationship when demand is elastic (price elasticity > 1), which means that increases in price will lead to decreases in total revenue. Price changes will not affect total revenue when the demand is unit elastic (price elasticity = 1). Maximum total revenue is achieved where the elasticity of demand is 1.
Total revenue, the product price times the quantity of the product demanded, can be represented at an initial point by a rectangle with corners at the following four points on the demand graph: price (P 1), quantity demanded (Q 1), point A on the demand curve, and the origin (the intersection of the price axis and the quantity axis).
Profit maximization using the total revenue and total cost curves of a perfect competitor. To obtain the profit maximizing output quantity, we start by recognizing that profit is equal to total revenue minus total cost (). Given a table of costs and revenues at each quantity, we can either compute equations or plot the data directly on a graph.
The marginal revenue function has twice the slope of the inverse demand function. [9] The marginal revenue function is below the inverse demand function at every positive quantity. [10] The inverse demand function can be used to derive the total and marginal revenue functions. Total revenue equals price, P, times quantity, Q, or TR = P×Q.
As popularized by supply-side economist Arthur Laffer, the curve is typically represented as a graph that starts at 0% tax with zero revenue, rises to a maximum rate of revenue at an intermediate rate of taxation, and then falls again to zero revenue at a 100% tax rate. However, the shape of the curve is uncertain and disputed among economists.
The total cost curve, if non-linear, can represent increasing and diminishing marginal returns.. The short-run total cost (SRTC) and long-run total cost (LRTC) curves are increasing in the quantity of output produced because producing more output requires more labor usage in both the short and long runs, and because in the long run producing more output involves using more of the physical ...
[1] [3] [8] The marginal revenue (the increase in total revenue) is the price the firm gets on the additional unit sold, less the revenue lost by reducing the price on all other units that were sold prior to the decrease in price. Marginal revenue is the concept of a firm sacrificing the opportunity to sell the current output at a certain price ...
The marginal profit per unit of labor equals the marginal revenue product of labor minus the marginal cost of labor or M π L = MRP L − MC L A firm maximizes profits where M π L = 0. The marginal revenue product is the change in total revenue per unit change in the variable input assume labor. [10] That is, MRP L = ∆TR/∆L.