enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Timing diagram over one revolution for angle, angular velocity, angular acceleration, and angular jerk. Consider a rigid body rotating about a fixed axis in an inertial reference frame. If its angular position as a function of time is θ(t), the angular velocity, acceleration, and jerk can be expressed as follows:

  3. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  4. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  5. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Equation [3] involves the average velocity ⁠ v + v 0 / 2 ⁠. Intuitively, the velocity increases linearly, so the average velocity multiplied by time is the distance traveled while increasing the velocity from v 0 to v, as can be illustrated graphically by plotting velocity against time as a straight line graph. Algebraically, it follows ...

  7. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    The same reasoning used with respect to the position of a particle to define velocity, can be applied to the velocity to define acceleration. The acceleration of a particle is the vector defined by the rate of change of the velocity vector. The average acceleration of a particle over a time interval is defined as the ratio.

  8. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    These relationships can be demonstrated graphically. The gradient of a line on a displacement time graph represents the velocity. The gradient of the velocity time graph gives the acceleration while the area under the velocity time graph gives the displacement. The area under a graph of acceleration versus time is equal to the change in velocity.

  9. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Acceleration is the rate of change of velocity. At any point on a trajectory, the magnitude of the acceleration is given by the rate of change of velocity in both magnitude and direction at that point. The true acceleration at time t is found in the limit as time interval Δt → 0 of Δv/Δt.