Search results
Results from the WOW.Com Content Network
In statistics, a sequence of random variables is homoscedastic (/ ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k /) if all its random variables have the same finite variance; this is also known as homogeneity of variance. The complementary notion is called heteroscedasticity, also known as heterogeneity of variance.
In statistics, a sequence of random variables is homoscedastic (/ ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k /) if all its random variables have the same finite variance; this is also known as homogeneity of variance. The complementary notion is called heteroscedasticity, also known as heterogeneity of variance.
O'Brien tested several ways of using the traditional analysis of variance to test heterogeneity of spread in factorial designs with equal or unequal sample sizes. The jackknife pseudovalues of s 2 and the absolute deviations from the cell median are shown to be robust and relatively powerful.
Difference between ANOVA and Kruskal–Wallis test with ranks. The Kruskal–Wallis test by ranks, Kruskal–Wallis test (named after William Kruskal and W. Allen Wallis), or one-way ANOVA on ranks is a non-parametric statistical test for testing whether samples originate from the same distribution.
This equation is also equal to the weighted arithmetic mean of the proportional abundances p i of the types of interest, with the proportional abundances themselves being used as the weights. [2] Proportional abundances are by definition constrained to values between zero and one, but it is a weighted arithmetic mean, hence λ ≥ 1/ R , which ...
These are also known as heteroskedasticity-robust standard errors (or simply robust standard errors), Eicker–Huber–White standard errors (also Huber–White standard errors or White standard errors), [1] to recognize the contributions of Friedhelm Eicker, [2] Peter J. Huber, [3] and Halbert White. [4]
In statistics, overdispersion is the presence of greater variability (statistical dispersion) in a data set than would be expected based on a given statistical model. A common task in applied statistics is choosing a parametric model to fit a given set of empirical observations.
[1] [2] [3] It is named after William Gemmell Cochran. Cochran's Q test should not be confused with Cochran's C test , which is a variance outlier test. Put in simple technical terms, Cochran's Q test requires that there only be a binary response (e.g. success/failure or 1/0) and that there be more than 2 groups of the same size.