enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.

  3. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    The red population has mean 100 and variance 100 (SD=10) while the blue population has mean 100 and variance 2500 (SD=50) where SD stands for Standard Deviation. In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable.

  4. Squared deviations from the mean - Wikipedia

    en.wikipedia.org/wiki/Squared_deviations_from...

    Squared deviations from the mean (SDM) result from squaring deviations. In probability theory and statistics, the definition of variance is either the expected value of the SDM (when considering a theoretical distribution) or its average value (for actual experimental data). Computations for analysis of variance involve the partitioning of a ...

  5. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    Bias in standard deviation for autocorrelated data. The figure shows the ratio of the estimated standard deviation to its known value (which can be calculated analytically for this digital filter), for several settings of α as a function of sample size n. Changing α alters the variance reduction ratio of the filter, which is known to be

  6. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    It is also the continuous distribution with the maximum entropy for a specified mean and variance. [18] [19] Geary has shown, assuming that the mean and variance are finite, that the normal distribution is the only distribution where the mean and variance calculated from a set of independent draws are independent of each other. [20] [21]

  7. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    The one-sided variant can be used to prove the proposition that for probability distributions having an expected value and a median, the mean and the median can never differ from each other by more than one standard deviation. To express this in symbols let μ, ν, and σ be respectively the mean, the median, and the standard deviation. Then

  8. Probability distribution fitting - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution...

    For example, the parameter (the expectation) can be estimated by the mean of the data and the parameter (the variance) can be estimated from the standard deviation of the data. The mean is found as = /, where is the data value and the number of data, while the standard deviation is calculated as = (). With these parameters many distributions, e ...

  9. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    Standard deviation: the square root of the variance, and hence another measure of dispersion. Symmetry: a property of some distributions in which the portion of the distribution to the left of a specific value (usually the median) is a mirror image of the portion to its right.