enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Henderson–Hasselbalch equation - Wikipedia

    en.wikipedia.org/wiki/Henderson–Hasselbalch...

    The Henderson–Hasselbalch equation can be used to model these equilibria. It is important to maintain this pH of 7.4 to ensure enzymes are able to work optimally. [10] Life threatening Acidosis (a low blood pH resulting in nausea, headaches, and even coma, and convulsions) is due to a lack of functioning of enzymes at a low pH. [10]

  3. Bjerrum plot - Wikipedia

    en.wikipedia.org/wiki/Bjerrum_plot

    K 1, K 2 and DIC each have units of a concentration, e.g. mol/L. A Bjerrum plot is obtained by using these three equations to plot these three species against pH = −log 10 [H +] eq, for given K 1, K 2 and DIC. The fractions in these equations give the three species' relative proportions, and so if DIC is unknown, or the actual concentrations ...

  4. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    The values below are standard apparent reduction potentials (E°') for electro-biochemical half-reactions measured at 25 °C, 1 atmosphere and a pH of 7 in aqueous solution. [1] [2] The actual physiological potential depends on the ratio of the reduced (Red) and oxidized (Ox) forms according to the Nernst equation and the thermal voltage.

  5. pH - Wikipedia

    en.wikipedia.org/wiki/PH

    When an acid is dissolved in water, the pH will be less than 7, while a base, or alkali, will have a pH greater than 7. A strong acid, such as hydrochloric acid, at concentration 1 mol dm −3 has a pH of 0, while a strong alkali like sodium hydroxide, at the same concentration, has a pH of 14. Since pH is a logarithmic scale, a difference of ...

  6. Acid–base titration - Wikipedia

    en.wikipedia.org/wiki/Acid–base_titration

    The pH after the equivalence point depends on the concentration of the conjugate base of the weak acid and the strong base of the titrant. However, the base of the titrant is stronger than the conjugate base of the acid. Therefore, the pH in this region is controlled by the strong base. As such the pH can be found using the following: [1]

  7. Buffer solution - Wikipedia

    en.wikipedia.org/wiki/Buffer_solution

    The smaller the difference, the more the overlap. In the case of citric acid, the overlap is extensive and solutions of citric acid are buffered over the whole range of pH 2.5 to 7.5. Calculation of the pH with a polyprotic acid requires a speciation calculation to be performed. In the case of citric acid, this entails the solution of the two ...

  8. Intracellular pH - Wikipedia

    en.wikipedia.org/wiki/Intracellular_pH

    Physiologically normal intracellular pH is most commonly between 7.0 and 7.4, though there is variability between tissues (e.g., mammalian skeletal muscle tends to have a pH i of 6.8–7.1). [4] [5] There is also pH variation across different organelles, which can span from around 4.5 to 8.0. [6] [7] pH i can be measured in a number of ...

  9. Acid neutralizing capacity - Wikipedia

    en.wikipedia.org/wiki/Acid_neutralizing_capacity

    Acid-neutralizing capacity or ANC in short is a measure for the overall buffering capacity against acidification of a solution, e.g. surface water or soil water.. ANC is defined as the difference between cations of strong bases and anions of strong acids (see below), or dynamically as the amount of acid needed to change the pH value from the sample's value to a chosen different value. [1]