enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    This familiar equation for a plane is called the general form of the equation of the plane or just the plane equation. [6] Thus for example a regression equation of the form y = d + ax + cz (with b = −1) establishes a best-fit plane in three-dimensional space when there are two explanatory variables.

  3. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    Plane equation in normal form In Euclidean geometry , a plane is a flat two- dimensional surface that extends indefinitely. Euclidean planes often arise as subspaces of three-dimensional space R 3 {\displaystyle \mathbb {R} ^{3}} .

  4. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system— shown here in the mathematics convention —the sphere is adapted as a unit sphere , where the radius is set to unity and then can generally be ...

  5. Plane (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Plane_(mathematics)

    Plane equation in normal form In Euclidean geometry , a plane is a flat two- dimensional surface that extends indefinitely. Euclidean planes often arise as subspaces of three-dimensional space R 3 {\displaystyle \mathbb {R} ^{3}} .

  6. Hesse normal form - Wikipedia

    en.wikipedia.org/wiki/Hesse_normal_form

    Distance from the origin O to the line E calculated with the Hesse normal form. Normal vector in red, line in green, point O shown in blue. In analytic geometry, the Hesse normal form (named after Otto Hesse) is an equation used to describe a line in the Euclidean plane, a plane in Euclidean space, or a hyperplane in higher dimensions.

  7. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    Three distinct planes, no pair of which are parallel, can either meet in a common line, meet in a unique common point, or have no point in common. In the last case, the three lines of intersection of each pair of planes are mutually parallel. A line can lie in a given plane, intersect that plane in a unique point, or be parallel to the plane.

  8. Distance from a point to a plane - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    In either the coordinate or vector formulations, one may verify that the given point lies on the given plane by plugging the point into the equation of the plane. To see that it is the closest point to the origin on the plane, observe that p {\displaystyle \mathbf {p} } is a scalar multiple of the vector v {\displaystyle \mathbf {v} } defining ...

  9. Hyperplane - Wikipedia

    en.wikipedia.org/wiki/Hyperplane

    In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...