enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Formulations of special relativity - Wikipedia

    en.wikipedia.org/wiki/Formulations_of_special...

    Spacetime algebra is a type of geometric algebra that is closely related to Minkowski space, and is equivalent to other formalisms of special relativity. It uses mathematical objects such as bivectors to replace tensors in traditional formalisms of Minkowski spacetime, leading to much simpler equations than in matrix mechanics or vector calculus .

  3. Spacetime - Wikipedia

    en.wikipedia.org/wiki/Spacetime

    In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events ...

  4. Relativity of simultaneity - Wikipedia

    en.wikipedia.org/wiki/Relativity_of_simultaneity

    In the spacetime diagram, the dashed line represents a set of points considered to be simultaneous with the origin by an observer moving with a velocity v of one-quarter of the speed of light. The dotted horizontal line represents the set of points regarded as simultaneous with the origin by a stationary observer.

  5. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    Any observer can make measurements and the precise numerical quantities obtained only depend on the coordinate system used. This suggested a way of formulating relativity using 'invariant structures', those that are independent of the coordinate system (represented by the observer) used, yet still have an independent existence.

  6. Special relativity - Wikipedia

    en.wikipedia.org/wiki/Special_relativity

    Rather than an invariant time interval between two events, there is an invariant spacetime interval. Combined with other laws of physics, the two postulates of special relativity predict the equivalence of mass and energy , as expressed in the mass–energy equivalence formula ⁠ E = m c 2 {\displaystyle E=mc^{2}} ⁠ , where c {\displaystyle ...

  7. Derivation of the Schwarzschild solution - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    A spherically symmetric spacetime is one that is invariant under rotations and taking the mirror image. A static spacetime is one in which all metric components are independent of the time coordinate t {\displaystyle t} (so that ∂ ∂ t g μ ν = 0 {\displaystyle {\tfrac {\partial }{\partial t}}g_{\mu \nu }=0} ) and the geometry of the ...

  8. Postulates of special relativity - Wikipedia

    en.wikipedia.org/wiki/Postulates_of_special...

    1. First postulate (principle of relativity) The laws of physics take the same form in all inertial frames of reference.. 2. Second postulate (invariance of c) . As measured in any inertial frame of reference, light is always propagated in empty space with a definite velocity c that is independent of the state of motion of the emitting body.

  9. General covariance - Wikipedia

    en.wikipedia.org/wiki/General_covariance

    Much of the work on classical unified field theories consisted of attempts to further extend the general theory of relativity to interpret additional physical phenomena, particularly electromagnetism, within the framework of general covariance, and more specifically as purely geometric objects in the spacetime continuum.