Search results
Results from the WOW.Com Content Network
The magnitude of the effect depends on the air density (and hence air pressure) or the water density respectively; see Apparent weight for details. The gravitational effects of the Moon and the Sun (also the cause of the tides ) have a very small effect on the apparent strength of Earth's gravity, depending on their relative positions; typical ...
The radii of these objects range over three orders of magnitude, from planetary-mass objects like dwarf planets and some moons to the planets and the Sun. This list does not include small Solar System bodies , but it does include a sample of possible planetary-mass objects whose shapes have yet to be determined.
In astrophysics, gravitational compression is a phenomenon in which gravity, acting on the mass of an object, compresses it, reducing its size and increasing the object's density. In the core of a star such as the Sun , gravitational pressure is balanced by the outward thermal pressure from fusion reactions , temporarily halting gravitational ...
The table below shows comparative gravitational accelerations at the surface of the Sun, the Earth's moon, each of the planets in the Solar System and their major moons, Ceres, Pluto, and Eris. For gaseous bodies, the "surface" is taken to mean visible surface: the cloud tops of the giant planets (Jupiter, Saturn, Uranus, and Neptune), and the ...
Gravitation, also known as gravitational attraction, is the mutual attraction between all masses in the universe.Gravity is the gravitational attraction at the surface of a planet or other celestial body; [6] gravity may also include, in addition to gravitation, the centrifugal force resulting from the planet's rotation (see § Earth's gravity).
Solutions are also used to describe the motion of binary stars around each other, and estimate their gradual loss of energy through gravitational radiation. General relativity describes the gravitational field by curved space-time; the field equations governing this curvature are nonlinear and therefore difficult to solve in a closed form.
Gravity is usually measured in units of acceleration.In the SI system of units, the standard unit of acceleration is metres per second squared (m/s 2).Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (g n), equal to 9.80665 m/s 2.
In sectional/side view, a two-dimensional representation of the three-dimensional concept of the Hill sphere, here showing the Earth's "gravity well" (gravitational potential of Earth, blue line), the same for the Moon (red line) and their combined potential (black thick line).